Tolerance of glycosylphosphatidylinositol (GPI)-specific phospholipase D overexpression by Chinese hamster ovary cell mutants with aberrant GPI biosynthesis.

نویسندگان

  • Xiaohan Du
  • Jiewei Cai
  • Jian-zhong Zhou
  • Victoria L Stevens
  • Martin G Low
چکیده

Mammalian glycosylphosphatidylinositol (GPI)-specific phospholipase D (GPI-PLD) is capable of releasing GPI-anchored proteins by cleavage of the GPI moiety. A previous study indicated that overexpression of GPI-PLD in mouse RAW 264.7 monocytes/macrophages could be cytotoxic, since survivors of stable transfections had enzymic activity no higher than untransfected cells [Du and Low (2001) Infect. Immun. 69, 3214-3223]. We investigated this phenomenon by transfecting bovine GPI-PLD cDNA stably into Chinese hamster ovary (CHO) cells using a bi-cistronic expression system. The surviving transfectants showed an unchanged cellular level of GPI-PLD, supporting the cytotoxicity hypothesis. However, when using a CHO mutant defective in the second step of GPI biosynthesis as host, the expression level of GPI-PLD in stable transfectants was increased by 2.5-fold compared with untransfected or empty-vector-transfected cells. To identify the mechanism, we studied another CHO cell mutant (G9PLAP.D5), which seems to be defective at a later stage in GPI biosynthesis. In sharp contrast with wild-type cells, GPI-PLD activity in G9PLAP.D5 transfected with bovine GPI-PLD cDNA was 100-fold higher than untransfected or empty-vector-transfected cells. This was accompanied by a significant release of alkaline phosphatase into the medium and a decrease in membrane-associated alkaline phosphatase. Taken together, our results indicate that overexpression of GPI-PLD is lethal to wild-type cells, possibly by catalysing the overproduction of GPI-derived toxic substances. We propose that cells with abnormal GPI biosynthesis/processing can escape the toxic effect of these substances.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isolation and characterization of a Chinese hamster ovary (CHO) mutant defective in the second step of glycosylphosphatidylinositol biosynthesis.

Mutant cell lines defective in the biosynthesis of glycosylphosphatidylinositol (GPI) described to date were isolated by selecting cells which no longer expressed one or more endogenous GPI-anchored proteins on their surface. In this study, a new mutant in this pathway was isolated from ethylmethane-sulphonate-mutagenized Chinese hamster ovary cells stably transfected with human placental alkal...

متن کامل

Clostridium septicum alpha toxin uses glycosylphosphatidylinositol-anchored protein receptors.

The alpha toxin produced by Clostridium septicum is a channel-forming protein that is an important contributor to the virulence of the organism. Chinese hamster ovary (CHO) cells are sensitive to low concentrations of the toxin, indicating that they contain toxin receptors. Using retroviral mutagenesis, a mutant CHO line (BAG15) was generated that is resistant to alpha toxin. FACS analysis show...

متن کامل

Glycosyl phosphatidylinositol anchorage of tissue factor pathway inhibitor.

BACKGROUND The endothelium is a major source of tissue factor pathway inhibitor (TFPI), the endogenous regulator of TF-induced coagulation, and a significant proportion of the expressed TFPI remains associated with the endothelial surface. METHODS AND RESULTS Phosphatidylinositol-specific phospholipase C (PI-PLC) treatment reduced TFPI at the surface of cultured endothelial cells by approxima...

متن کامل

Steric and not structure-specific factors dictate the endocytic mechanism of glycosylphosphatidylinositol-anchored proteins

Diverse glycosylphosphatidylinositol (GPI)-anchored proteins enter mammalian cells via the clathrin- and dynamin-independent, Arf1-regulated GPI-enriched early endosomal compartment/clathrin-independent carrier endocytic pathway. To characterize the determinants of GPI protein targeting to this pathway, we have used fluorescence microscopic analyses to compare the internalization of artificial ...

متن کامل

Mammalian PIG-L and its yeast homologue Gpi12p are N-acetylglucosaminylphosphatidylinositol de-N-acetylases essential in glycosylphosphatidylinositol biosynthesis.

Glycosylphosphatidylinositol (GPI) is used as a membrane anchor by many eukaryotic cell-surface proteins. The second step of GPI biosynthesis is de-N-acetylation of N-acetylglucosaminylphosphatidylinositol (GlcNAc-PI). We have previously cloned the rat PIG-L gene by expression cloning that complemented a mutant Chinese hamster ovary cell line defective in this step. Here we show that recombinan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 361 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2002